Lambda-doublet specificity in the low-temperature capture of NO(X 2Pi(1/2)) in low rotational states by C+ ions.
نویسندگان
چکیده
Following our general approach to Lambda-doubling specificity in the capture of dipolar molecules by ions [M. Auzinsh et al., J. Chem. Phys. 128, 184304 (2008)], we calculate the rate coefficients for the title process in the temperature range 10(-4)<T<10(2) K. Three regimes considered are as follows: (i) nonadiabatic capture in the regime of high-field Stark effect with respect to the Lambda-doubling components, (10(-1)<T<10(2) K), (ii) adiabatic capture in the regime of intermediate Stark effect (10(-3)<T<10(-1) K), and (iii) adiabatic capture in the limit of very low temperatures (T<<10(-3) K) in the regime of quadratic Stark effect with respect to the Lambda-doubling and hyperfine components. The results predict a high specificity of the capture rates with respect to the Lambda-doublet states even under conditions when the collision energy of the partners strongly exceeds the Lambda-doubling splitting.
منابع مشابه
Low temperature capture of open shell dipolar molecules by ions: the capture of rotationally selected NO((2)Pi(1/2), j) by C(+).
The low-energy capture of dipolar diatomic molecules in an open electronic state by ions is usually considered to be induced by the first-order charge-permanent dipole interaction with other terms of the long-range potential playing a minor role. If the molecular dipole moment is anomalously small (as is the case for slightly asymmetrical molecules), however, the situation changes, and the capt...
متن کاملSteric asymmetry and lambda-doublet propensities in state-to-state rotationally inelastic scattering of NO(2Pi(1/2)) with He.
Relative integrated cross sections are measured for rotationally inelastic scattering of NO(2Pi(1/2)),hexapole selected in the upper lambda-doublet level of the ground rotational state (j = 0.5), in collisions with He at a nominal energy of 514 cm(-1). Application of a static electric field E in the scattering region, directed parallel or antiparallel to the relative velocity vector v, allows t...
متن کاملNonadiabatic transitions between lambda-doubling states in the capture of a diatomic molecule by an ion.
The low-energy capture of a dipolar diatomic molecule in an adiabatically isolated electronic state with a good quantum number Omega (Hund's coupling case a) by an ion occurs adiabatically with respect to rotational transitions of the diatom. However, the capture dynamics may be nonadiabatic with respect to transitions between the pair of the Lambda-doubling states belonging to the same value o...
متن کاملDetection of low-frequency lambda-doublet transitions of the free 12CH and 13CH radicals.
By Fourier transform microwave spectroscopy, lambda-doubling transitions of (12)CH and (13)CH in the lowest rotational levels of the X(2) product operator(1/2) ground state have been directly detected, which has not been done previously. For both radicals, hyperfine-split lines have been measured to an accuracy of better than 1 ppm between 3 and 15 GHz, an improvement of at least 2 orders of ma...
متن کاملRates of complex formation in collisions of rotationally excited homonuclear diatoms with ions at very low temperatures: application to hydrogen isotopes and hydrogen-containing ions.
State-selected rate coefficients for the capture of ground and rotationally excited homonuclear molecules by ions are calculated, for low temperatures, within the adiabatic channel classical (ACCl) approximation, and, for zero temperature, via an approximate calculation of the Bethe limit. In the intermediate temperature range, the accurate quantal rate coefficients are calculated for j = 0 and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 130 1 شماره
صفحات -
تاریخ انتشار 2009